The Rotational Spectrum of Ketene Isotopomers with ¹⁸O and ¹³C Revisited

A. Guarnieri and A. Huckauf^a

Technische Fakultät der Universität Kiel, Lehrstuhl für Hochfrequenztechnik

a presently: Department of Chemistry, University of Alberta, Edmonton AB T6G 2G2, Canada

Reprint requests to Prof. A. G.; Fax: 0049 (0)431 880 6152; E-Mail: ag@tf.uni-kiel.de or Aiko.Huckauf@ualberta.ca

Z. Naturforsch. **58a**, 275 – 279 (2003); received February 19, 2003

The pure rotational spectra of [18 O]ketene, H_2 C= C^{18} O, [$^{1-13}$ C]ketene, H_2 C= 13 CO, and [13 C]ketene, H_2 ¹³C=CO, have been revisited in the frequency region 200–350 GHz in the ground vibrational state.

From more than 100 R-branch transitions for each isotopomer a set of rotational and centrifugal distortion constants could be derived using the Watson *S*-reduction formalism. The values obtained for the rotational constants *B* and *C* agree very well with results of former investigations. The agreement is worse with respect to the *A* constants, but our newly determined *A* values agree well with the corresponding values of the main species and the ^{17}O isotopomer.

Key words: Rotational Spectra; Ketene; Isotopomers; Structure.